
Organised, transparent and
reproducible science using

R, git, and drake

@dbarneche
Diego Barneche

www.diegobarneche.com

Three related problems
1. Organising stand-alone projects

✓Where to keep different files
✓Reconciling multiple versions of files

2. Making research reproducible
✓Recreate outputs from a paper
✓Record entire workflow

3. Efficient R-based workflows
✓When to re-run (update) things?

R can be
Irreproducible

setwd(“~/Documents/PhD/First_paper/Feb_2019/”)

read.csv(“~/Documents/PhD/First_paper/Feb_2019/raw_final_final.csv”)

R can be
Irreproducible

My pretty histogram

Values

Fr
eq
ue
nc
y

R can be
Irreproducible

+ R can be
Irreproducible

My pretty histogram

Values

Fr
eq
ue
nc
y

My pretty histogram

Values

Fr
eq
ue
nc
y

Manually edit data (data.xlsx —> data_v1.xlsx)

R can be
Irreproducible

Undocumented dependencies

script_analysis.R

script_analysis_v1.R

script_analysis_final.R

plots_hist.R

MS_final.docx

appendix.pdf

?

R can be
Irreproducible

Don’t do any of these things

R can be
Reproducible

+ + =

R can be
Reproducible

Today’s content

1. Project set up

2. Version control with git

3. GitHub

4. Simple reproducible reports

5. Drake

The Disaster

A niceR solution

proj/
|-- R/
|-- data/
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R

proj/
|-- R/
|-- data/
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R

A niceR solution

|-- R/ The R directory contains various
files with function definitions (but
only function definitions—no code
that actually runs).

proj/
|-- R/
|-- data/
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R

A niceR solution

|-- data/

The data directory contains data
used in the analysis. This is
treated as read only; in particular
the R files are never allowed to
write to the files in here.
Depending on the project, these
might be .csv files, a database,
and the directory itself may have
subdirectories.

proj/
|-- R/
|-- data/
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R

A niceR solution

|-- output/

The output/data directory
contains simulation output,
processed datasets, logs, or other
processed things. The output/
figures directory contains the
output figures generated by your
code. Altogether the output
directory only contains generated
files; that is, I should always be
able to delete the contents and
regenerate them.

|-- |-- data/
|-- |-- figures/

proj/
|-- R/
|-- data/
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R

A niceR solution

|-- doc/

The doc directory contains the
paper. The RMarkdown file type
can pick up figures directly made
by R. With Word you'll have to
paste them in yourself as the
figures update.

proj/
|-- R/
|-- data/
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R

A niceR solution

|-- analysis.R

In this set up, analysis.R is the R
script that actually does things in
the project root. For very simple
projects, you might drop the R
directory, perhaps replacing it with
a single file analysis-functions.R
which you source() within the .R
file.

proj/
|-- R/
|-- data/
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R

A niceR solution

|-- analysis.R

library(some_package)
library(some_other_package)
source("R/functions.R")
source("R/utilities.R")

...followed by the code that loads
the data, cleans it up, runs the
analysis and generates the figures.

A niceR solution
gapminder/
|-- R/analysis.R
|-- data/gapminder-FiveYearData.csv
|-- output/
|-- |-- data/
|-- |-- figures/
|-- doc/
|-- analysis.R
|-- gapminder.Rproj

Task

Version control

Version control
• Code is doing odd things now and didn't used to.

• Deleted some code and want to get it back.

• Show your supervisor what you did last week.

• See what your collaborators wrote last week.

• Get the previous version of MS back.

• Experiment and try different strategies.

• Have an audit-able project history.

Version control
You might already be using some form of version control

 ## My file (c) John Snow
 ## Created: 2018/10/04
 ## Modified: 2019/04/04

Version control
You might already be using some form of version control

 ## My file (c) John Snow
 ## Created: 2018/10/04
 ## Modified: 2019/04/04

•Repetitive and boring

•Difficult to extract the information easily

•No checking on the contents of the fields

Version control
You might already be using some form of version control

 ## My file (c) John Snow
 ## Created: 2018/10/04
 ## Modified: 2019/04/04

•Repetitive and boring

•Difficult to extract the information easily

•No checking on the contents of the fields

Version control

Version 1 Version 2 Version 3 Version 4 Version 5

A A1 A1 A2 A2

B B B B1 B2

C C1 C2 C2 C3

Changes over time

Version control
working directory just a folder on your computer

$ git add

stage get files ready to commit

$ git commit

local repository the permanent history of changes

$ git push

remote repository online repository (shared?)

Acknowledgements
This material is not in anyway original
It was heavily based on the nice R code blog and The Carpentries Foundation

Special thanks to:

JJ Valletta
TJ McKinley
Charlotte Brand

Daniel Falster
Rich FitzJohn

for setting up, planning, and co-teaching this workshop

for creating the nice R code blog

@dbarneche

