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Workshop learning outcomes

• Understand the key concepts and terminology used in the field of
machine learning

• Build predictive models for clustering and classification problems

• Apply machine learning algorithms in R to a variety of real-world
datasets

• Recognise practical issues in data-driven modelling

Note: All workshop material can be found here:
https://exeter-data-analytics.github.io/
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Recommended reading
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Overview

• Why are we here?

• What is machine learning?

• Types of machine learning methods

• Statistics vs Machine Learning

• Terminology

• A bird’s-eye view of machine learning
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Why are we here?

The infamous Big Data!
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Water, water everywhere, nor any drop to drink
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What’s the problem?

Predicting fish species richness
Olden et al. Q Rev Biol 2008, 83(2):171-193

Data: Lake surface area, shoreline perimeter, air temperature,
precipitation and elevation

Method: Decision trees (supervised)

Figure 2. Regression Tree and Associated Results for Predicting Fish Species Richness
Results from the regression tree for predicting fish species richness as a function of environmental charac-

teristics for 8236 north-temperate lakes in Ontario, Canada. (A) 10-fold cross-validation (solid circles) and
resubstitution (empty circles) relative error for the regression tree. The dashed line represents ! 1-SE of the
relative error for the minimum regression tree (i.e., 15 nodes), and the selected tree under the 1-SE rule is
indicated by the arrow. (B) Relative importance of the environmental variables for predicting fish species
richness (note that values do not sum to 100). Variables include mean monthly air temperature (TEMP) and
precipitation (PPT), lake surface area (AREA), total shoreline perimeter (SHP), maximum depth (MAXD),
elevation (ELEV), secchi disc depth (SDD), and pH. (C) The final regression tree relating fish species richness
to lake environmental characteristics. Node precision is indicated by Root-Mean-Squared-Error.
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What’s the problem?

Detection of malarial parasites
Purwar et al. Malar J 2011, 10:364

Data: Image intensity

Method: Modified k-means clustering (unsupervised)

artefacts are more or less homogeneous objects. The
method to separate parasites from the artefacts is
described below by an illustrative example. Figure 14a
represents a sample image after background intensity set
to zero and with a parasite in one of the RBCs. Figure
14b is binary image of Figure 14a. Now each component
in Figure 14a will have an average intensity and clearly
the average intensity of platelet or WBC will be near to
stained pixel intensity because of their homogeneous
nature. An intensity based threshold can be used to
separate the platelet and WBCs. Recall that PKMC
returns three clusters of a) background, b) stained pixels
and c) RBC as shown in Figure 15. Apart from clusters
labels PkMC also reports the average intensity of each
cluster as three centroids. The comparison of the aver-
age intensity of each component from Figure 14a to the
centroid for stained pixel helps to distinguish between
platelet or WBCs or any other artefact. This ensures
that stained pixels, which are parasites, are retained and
artefacts are removed as shown in Figure 16.
The parasite detection method was implemented over

the 10 potential positive cases and 10 negative cases.
The identity of the positive and negative cases was
unknown at the time of examination. The detection of
parasites in two examples is represented in Figures 17a
and 17b are marked in black. The importance of the
unsupervised algorithm has been validated on images
taken in different condition. Also the platelets and
WBCs in such images are not recognized as parasites.

Results
The proposed method was tested on large variety of
images with malarial parasites at different life stages to

check for the sensitivity and specificity of the algorithm.
The method is developed using few images from Alberta
Health Services and then tested over different variety
cases and individual images. The algorithm is designed
to work on stack of images and provide cumulative
results or it can generate results on a single image. The
performance of the method was tested on cases pro-
vided by Alberta Health Services laboratories for 10
potential positive cases of malaria and 10 negative cases
to cross-validate the method. The method was further
verified and tested in a blindfold format on over 40
images from a data set provided by the Department of
Pathology and Laboratory Medicine, at the University of
Washington. These results clearly show the robustness
and practicality of the proposed method. The measure
of performance and accuracy of the method was evalu-
ated by two metrics: sensitivity and specificity [9]. Sensi-
tivity is defined as the probability (percentage) that
patients with the infection will have a positive result
using the test under evaluation. Specificity is defined as
the probability (percentage) that patients without the
infection will have a negative result using the test under
evaluation. The values for sensitivity and specificity are
expressed in terms of true positives (TP), false positive
(FP), false negative (FN) and true negative (TN) as
defined below in expressions 2 and 3:

Sensitivity =
TP

TP + FN
(2)

Figure 14 a) Gray scale image with background pixels set to
zero (step 2) b) Binary image after boundary detection (step 5).

Figure 15 Ideally PkMC generates three clusters a)
Background, b) Stained pixels (parasites, platelets and other
artefacts) and c) RBC.

Figure 16 After implementing threshold check a) Only RBCs
are retained i.e. platelet and artefact are removed to finally
yield b) Binary mask of Parasite.

Figure 17 Parasites marked image.

Purwar et al. Malaria Journal 2011, 10:364
http://www.malariajournal.com/content/10/1/364

Page 8 of 10

Automated and unsupervised detection of
malarial parasites in microscopic images
Purwar et al.

Purwar et al. Malaria Journal 2011, 10:364
http://www.malariajournal.com/content/10/1/364 (13 December 2011)
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What’s the problem?

Creating carbon-density maps
Baccini et al. Nature Clim. Change 2012, 2:182-185

Data: Light detection and ranging (LiDAR) (elevation data)

Method: Random forests (ensemble of decision trees) (supervised)
NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE1354
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Figure 1 | Carbon contained in the aboveground live woody vegetation of tropical America, Africa and Asia (Australia excluded). The upper panels show
the frequency distribution of carbon in units of Mg C ha�1 for each region. Inset figures across the bottom provide higher-resolution examples of the spatial
detail present in the satellite-derived biomass data set. Carbon amount is represented in the maps as a colour scheme from dark brown (low carbon) to
dark green (high carbon). See upper panels for numeric values.

a 95% confidence interval (Supplementary Section S3.1). These
estimates are 21% higher than estimates provided by the FRA 2010,
the most comprehensive data set of tropical forest carbon compiled
to date. At the national level (Supplementary Appendix S1), we
estimate that the forests of Brazil and Indonesia store 53.2 and
18.6 PgC, respectively, despite high historical deforestation rates4.
The Democratic Republic of the Congo, which has experienced
relatively low rates of forest loss, is second only to Brazil in
having the largest stock of carbon (22.0 PgC) in forests. When
our results are compared with estimates derived from more
recent and redesigned national forest inventories implemented by
the FAO for a limited number of tropical countries17, (Fig. 2;
Supplementary Section 3.2), there is close agreement, providing
further support for the conclusion that carbon storage in tropical
forests is substantially greater than previously thought.We attribute
this result to the ability of our approach to capture the range and
geographic distribution of carbon density across the tropics with a
degree of accuracy that was not previously feasible (Supplementary
Fig. S13). This accuracy varies with the spatial scale of analysis
(Supplementary Sections 3.1, 3.2) and we expect accuracies to
increase in the decade ahead as new satellite sensors (for example,
satellite LiDAR, and radar) designed specifically for vegetation
structuremeasurements become available for ecosystem studies.

The spatially explicit nature of the new carbon-density data
set allows comparisons to be made among regions and nations
that were not possible in the past, and also provides important
insights into how aboveground carbon is distributed across land
cover types both locally and regionally. Tropical forests store 84.2%
of aboveground carbon in Latin America, while shrublands and
savannahs (for example, Brazilian Cerrado) store 15.8% (Table 1).
Aboveground carbon is partitioned similarly in Southeast Asia,
but in Africa carbon storage is more evenly distributed between
forests (54.1%) and other woody vegetation (45.9%; consistent with
ref. 18). As a result, the clearing of non-forested lands in Africa may
contribute significantly to total carbon emissions.
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Figure 2 | Comparison of national aboveground carbon stock estimates.
The figure shows five tropical nations for which FAO FRA 2005 (ref. 29),
FAO FRA 2010 (ref. 3), FAO National Forest Monitoring and Assessment
(NFMA) (ref. 17) and SDB estimates are available. Alternative carbon stock
estimates30 are shown for comparison. The error bars indicate the
uncertainity in national level estimates (at 95% CI for SDB data).

In addition to providing information on the geographic
distribution of aboveground carbon stocks, the new data provide
an improved basis for estimating CO2 emissions from tropical
deforestation. Towards this end, we used a well-established
model19,20 to calculate pan-tropical carbon emissions for the
period 2000–2010. Three estimates of aboveground live biomass
(that is, carbon density) served as alternative inputs: satellite-
derived biomass (SDB; Fig. 1), satellite-derived biomass weighted

NATURE CLIMATE CHANGE | VOL 2 | MARCH 2012 | www.nature.com/natureclimatechange 183
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What’s the problem?

Acoustic classification of multiple simultaneous bird species
Briggs et al. J Acoust Soc Am 2012, 131(6):4640-4650

Data: Segments in spectrogram (time vs frequency) from 10 secs
audio recordings (corresponding to syllables of bird call)

Method: Multi-instance multi-label learning (supervised)

threshold,29 we use a supervised SISL classifier to label each
pixel in a spectrogram as bird sound or noise.31 To do so, we
associate each pixel in a spectrogram with a feature vector
that describes a rectangular patch surrounding it. So for a
particular ðt; f Þ in the spectrogram, we compute its feature
vector xðt; f Þ as follows.

(1) The spectrum-bin index f .
(2) The value of the elements of the spectrogram in a rectan-

gle surrounding ðt; f Þ, i.e., Ŝði; jÞ; i 2 ½t$ tw; tþ tw&;

j 2 ½f $ fw; f þ fw&, where in our setup tw ¼ 6 and
fw ¼ 12 (these values are manually tuned for the sam-
pling frequency and window size used in our study).

(3) The variance of Ŝ in the same rectangle as above.

In order to train the classifier used for segmentation, we
manually annotate a collection of spectrograms as examples
of correct segmentation (Fig. 2). The mask Mðt; f Þ for spec-
trogram Ŝðt; f Þ is defined as Mðt; f Þ ¼ 0 (white) if element
ðt; f Þ is background noise and Mðt; f Þ ¼ 1 (black) if it is bird
sound. Recall that a SISL classifier (such as a random forest)
takes as training data a list of pairs ðx1; y1Þ;…; ðxn; ynÞ. We
form these pairs by selecting 500 000 points ðti; fiÞ at random
within the manually annotated spectrograms. These points
are sampled so there are 90% negative examples and 10%
positive examples. For each point we compute the feature
vector as described above, xi ¼ xðti; fiÞ. The label for each
training example is yi ¼ Mðti; fiÞ (i.e., we have a two-class
problem with labels 0 and 1). Then we train a random forest
classifier30 with 40 trees on this data (a random forest is an
ensemble of decision trees).

Given an input x, a random forest generates a probabil-
ity PðyjxÞ for the instance to belong to each class y, which is
the fraction of trees in the forest that vote for label y given
input x. We use the random forest to compute the probability
for each pixel ðt; f Þ in the spectrogram to be bird sound, i.e.,
Pðy ¼ 1jxðt; f ÞÞ. Then we smooth these probabilities by
convolving with a Gaussian kernel to obtain gðt; f Þ
¼ Pðy ¼ 1jxðt; f ÞÞ ( K, where K is Gaussian kernel with
r ¼ 3 over a 17) 17 box. Finally, we obtain a predicted
segmentation mask Mðt; f Þ for a spectrogram by applying a
threshold of h ¼ 0:2 to gðt; f Þ (chosen by visual inspection
of results with varying h). Figure 3(b) shows an example of
the predicted segmentation for one recording.

The random forest classifier discussed in this section is
only used for segmentation; it is not directly involved in

FIG. 2. An example of the manual segmentation that is used to train our
supervised segmentation algorithm.

FIG. 3. (Color online) Extracting a
syllable from the segmentation
results. (a) The original spectrogram,
(b) the binary mask generated by our
segmentation algorithm. The high-
lighted segment will be further proc-
essed in this example. Note that
several other segments overlap in
time. (c) A cropped mask of the high-
lighted segment. (d) The masked and
cropped spectrogram corresponding
to the highlighted segment.

J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012 Briggs et al.: Classification of multiple bird species 4643

Downloaded 15 Jun 2012 to 128.193.8.24. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp
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What my mum thinks machine learning is
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Who uses machine learning?
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Who uses machine learning?

Machine Learning in Ecosystem Informatics and Sustainability

Thomas G. Dietterich
School of Electrical Engineering and Computer Science

Oregon State University
tgd@cs.orst.edu

Abstract
Ecosystem Informatics brings together mathemat-
ical and computational tools to address scientific
and policy challenges in the ecosystem sciences.
These challenges include novel sensors for col-
lecting data, algorithms for automated data clean-
ing, learning methods for building statistical mod-
els from data and for fitting mechanistic models to
data, and algorithms for designing optimal policies
for biosphere management. This presentation dis-
cusses these challenges and then describes recent
work on the first two of these—new methods for
automated arthropod population counting and lin-
ear Gaussian DBNs for automated cleaning of sen-
sor network data.

1 Introduction
Computer science has had a revolutionary impact in molec-
ular biology and genetics. This impact was not merely the
result of automating existing ways of doing science. In-
stead, novel computer science methods, when coupled with
novel instruments (e.g., shotgun sequencing of the genome,
DNA arrays) transformed the scientific enterprise. In place
of hypothesis-driven experiments examining a particular sub-
system or pathway, computational methods supported data-
driven science in which massive amounts of data were col-
lected first, and then subjected to computational analysis to
suggest hypotheses and fit statistical and causal models.

This change was initially controversial. Scientists and
funding agencies were concerned that data collected without
any prior hypothesis would be useless. But whole genome se-
quencing has turned out to be hugely important for address-
ing a wide range of questions in molecular and cell biology
as well as evolution and population biology.

The ecosystem sciences (ecosystem ecology, community
ecology, landscape ecology, hydrology, etc.) are today where
molecular biology was in the mid-1990s. Most research
projects formulate hypotheses and perform manipulative ex-
periments to refine and test them. Consequently, progress is
slow, and many of the most important management questions
(e.g., preventing species extinctions, limiting the spread of in-
vasive species and diseases, restoring ecosystems to healthy
function, mitigating the effects of climate change) cannot be

answered by the current state of scientific knowledge. There
is broad agreement that the ecosystem sciences are data-
limited, and there are several efforts under way to collect
observational data on a much larger scale than in the past
(e.g., the National Ecological Observatory Network (NEON;
www.neoninc.org). As ecology becomes a data-driven
science, there is a great need for computer scientists to help
with the entire data pipeline from instruments, to data man-
agement, to model fitting, to policy making. Figure 1 shows
the data pipeline. Sensors capture data to create datasets.
These are then analyzed to produced models that can sup-
port the design of policies. Models also guide the formation
of hypotheses which can then be tested by designing and ex-
ecuting experiments. There are many opportunities to apply
advanced computer science and artificial intelligence meth-
ods in this pipeline.
• Sensor Algorithms. Many sensors incorporate complex

algorithms to transform the raw signals into meaningful
data. For example, in Section 2 below, I will describe
the application of computer vision methods to classify and
count arthropod specimens.

• Data Cleaning. Sensors fail, particularly when they are
placed in challenging environments (glaciers, mountain
tops, the seafloor). When data is collected at large scale,
it is no longer feasible for people to manually detect and
diagnose sensor failures. Automated data cleaning meth-
ods are needed that can detect and correct sensor failures
in real time.

• Model Fitting. Once datasets are constructed, models
can be fit to them. The two primary kinds of models—
predictive models and causal models—are both needed for
ecological science and ecosystem management. A chal-
lenging aspect of ecological models is that many different
kinds of data, at many different spatial and temporal scales,
need to be considered simultaneously. An example of pre-
dictive models are species distribution models [Elith et al.,
2006]. These attempt to predict the spatio-temporal distri-
bution of plant and animal species as a function of climate
and habitat. A particular challenge is to jointly predict the
distribution of thousands of plant and animal species in or-
der to guide the design of conservation policies.

• Optimization. The development of optimal policies for
ecosystem management usually involves solving optimiza-
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MACHINE LEARNING METHODS WITHOUT TEARS: A PRIMER
FOR ECOLOGISTS
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keywords
ecological informatics, classification and regression trees, artificial neural
networks, evolutionary algorithms, genetic algorithms, GARP, inductive

modeling

abstract
Machine learning methods, a family of statistical techniques with origins in the field of artificial

intelligence, are recognized as holding great promise for the advancement of understanding and
prediction about ecological phenomena. These modeling techniques are flexible enough to handle
complex problems with multiple interacting elements and typically outcompete traditional approaches
(e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their
inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology
as compared to other disciplines. One potential explanation for this lack of interest is that machine
learning techniques do not fall neatly into the class of statistical modeling approaches with which most
ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches
that can be broadly used by ecologists: classification and regression trees, artificial neural networks,
and evolutionary computation. For each approach, we provide a brief background to the methodology,
give examples of its application in ecology, describe model development and implementation, discuss
strengths and weaknesses, explore the availability of statistical software, and provide an illustrative

The Quarterly Review of Biology, June 2008, Vol. 83, No. 2
Copyright © 2008 by The University of Chicago. All rights reserved.
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Over the years several definitions of machine learn-
ing have been proposed. One of the earliest ones
read “A computer program is said to learn from
experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E” [1]. Another
stated that machine learning is the “Ability of a computer pro-
gram to generate a new data structure that is different than an
old one, like production if…then…rules from input numerical
or nominal data” [2], and a very broad definition simply speci-
fied “Things learn when they change their behavior in a way
that makes them perform better in the future” [3]. The unify-
ing theme of machine learning is that it is concerned with
development of techniques that help extract knowledge/infor-
mation from training data in an automatic way in order to dis-
cover some regularities and use them to build a general and
accurate model able to make predictions for unseen data. 

Life sciences, including biology and medicine, are a growing
application area of machine learning. Medicine is largely an evi-
dence-driven discipline where large quantities of relatively
high-quality data are collected and stored in databases. The
medical data are highly heterogeneous and are stored in numeri-
cal, text, image, sound, and video formats. They include clinical
data (symptoms, demographics, biochemical tests, diagnoses
and various imaging, video, vital signals, etc.), logistics data
(charges and costs, policies, guidelines, clinical trials, etc.), bib-
liographical data, and molecular data. Bioinformatics, which
concerns the latter type of data, conceptualizes biology in terms
of molecules and applies “informatics” techniques, derived
from disciplines such as applied mathematics, computer sci-
ence, and statistics to understand and organize the information
associated with these molecules on a large scale [4]. In other
words, bioinformatics encompasses analysis of molecular data
expressed in the form of nucleotides, amino acids, DNA, RNA,
peptides, and proteins. The sheer amount and breadth of data
requires development of efficient methods for knowledge/infor-
mation extraction that can cope with the size and complexity of
the accumulated data. There are numerous examples of success-
ful applications of machine learning (ML) in areas of diagnosis
and prevention [5]–[7], prognosis and therapeutic decision
making [8], [9]. ML algorithms are used for discovering new
diseases [10], finding predictive and therapeutic biomarkers

[11], and detecting relationships and structure among the clini-
cal data [12]–[14]. ML contributes to the enhancement of man-
agement and information retrieval processes leading to
development of intelligent (involving ontologies and natural
language processing) and integrated (across repositories) litera-
ture searches [15], [16]. ML techniques are also used to modify
medical procedures in order to reduce cost and improve per-
ceived patient’s experience and outcomes [17], [18]. 

This special issue presents contributions chosen from a special
session on Applications of Machine Learning in Medicine and
Biology at the 4th International Conference on Machine Learning
and Applications, held in December 2005 in Los Angeles. It
includes extended versions of seven articles chosen from the sev-
enteen presented at the special session on “Applications of
Machine Learning in Medicine and Biology” and two invited arti-
cles. Although some surveys show increasing interest in applica-
tions of machine learning in bioinformatics [19], [20], this special
issue demonstrates that machine learning is also successfully used
on a wide variety of medical problems and data. 

A breadth of applications and tools are presented that
range from bioinformatics (microarray analysis, chromo-
some and proteome databases, modeling of inhibition of
metabolic networks), through signal analysis (echocardio-
graph images and electroencephalograph time series), drug
delivery, information retrieval, to software for pattern
recognition in biomedical data. The authors use a variety of
techniques such as association rules, feature selection,
Fisher’s linear discriminant analysis, inductive logic pro-
gramming, linear auto regression, neural networks, and rein-
forcement learning to achieve their goals. To compare how
ML techniques are used in medical problems, the articles
are organized according to a data mining and knowledge
discover process model, which is used to guide ML driven
projects in biology and medicine [14], [21]–[24]. The model
describes and organizes all activities of a ML project into a
sequence of six steps [24], [25]:
➤ understanding the problem, where authors present project

goals, current solutions and domain terminology, and
translate the medical problem into the ML domain

➤ understanding the data, where the corresponding medical
data is described and analyzed with respect to the underly-
ing ML problem

Machine Learning
in the Life Sciences

How it is Used on a Wide Variety of
Medical Problems and Data©BRAND X, PHOTODISC

KRZYSZTOF J. CIOS, LUKASZ A. KURGAN,
AND MAREK REFORMAT

Data Analysis and Mining in the Life Sciences

Nam Huyn
SurroMed, Inc.

2375 Garcia Ave, Mountain View, CA 94043, USA
phuyn@surromed.com

Abstract

Biotech companies routinely generate vast amounts of bio-

logical measurement data that must be analyzed rapidly and

mined for diagnostic, prognostic, or drug evaluation pur-

poses. While these data analysis tasks are critical to their

success, they have not benefited from recent advances that

emerged from database and KDD research. In this paper,

we focus on two such tasks: on-line analysis of clinical study

data, and mining broad datasets for biomarkers. We exam-

ine the new requirements that are not met by current data

analysis technologies and we identify new database and KDD

research to address these needs. We describe our experience

implementing a Scientific OLAP system and a data mining

platform for the support of biomarker discovery at SurroMed,

and we outline some key technical challenges that must be

overcome before data analysis and data mining technologies

can be widely adopted in the biotech industry.

1 Introduction

A central mission among a growing number of biotech
companies is to discover biological markers. A biolog-
ical marker, or biomarker, is a “characteristic that is
measured and evaluated as an indication of normal bio-
logical processes, pathogenic processes or pharmacologic
responses to therapeutic intervention” [10]. For exam-
ple, high levels of cholesterol in human blood have com-
monly been used as a biomarker for heart diseases. New
biomarkers are being sought that enable diseases to be
diagnosed more accurately or earlier than is currently
possible. Thanks to breakthroughs in high-throughput
measurement technologies in the last five years [14, 13],
tools such as gene chips, protein chips, and mass spec-
trometry are now widely available that are capable of
detecting hundreds of thousands of gene products, pro-
teins, and small organic molecules. These tools enable
biotech companies to routinely generate, from tiny vol-
umes of biological materials, very high volumes of mea-
surement data that must be summarized, compared, and
viewed efficiently. This approach to biomarker discovery
is illustrated in Figure 1.

These data analysis tasks are critical to the success of
biotech companies in biomarker discovery, yet support
from technologies such as OLAP (see [3, 16] for recent

High
Throughput

Measurement

Data Analysis
and Mining

Biological
samples

Subject profile

Biological
measurements

Biomarkers

Figure 1. “Shotgun” approach to biomarker discovery.

surveys of On-Line Analytical Processing) and data min-
ing has been inadequate. While these technologies have
been widely adopted in financial and e-commerce are-
nas, such is not the case in the biotech industry. To
understand why, let us take a closer look at the nature
of data generated in clinical studies, i.e., controlled sci-
entific experiments designed to answer specific clinical
research or engineering questions such as drug efficacy,
biomarker identification, and measurement method vali-
dation. Typically, the protocol for a clinical study speci-
fies the following “ingredients”: subject population, i.e.,
a well-characterized collection of subjects to be included
in the study; biological samples, i.e., what kinds of sam-
ples (e.g., tissues, body fluids), how many and when they
are drawn from the subjects; measurement methods, i.e.,
biological/chemical assays and instruments used to an-
alyze the samples. Figure 2 shows a view of what the
data schema might look like in a clinical study aimed at
evaluating drug efficacy.

subject draw clinicalCls drugCls m1 m2 . . .

John 1 Asthma A 3.1 5.4 . . .

John 2 Asthma A 4.6 5.3 . . .

Jane 1 Healthy B 1.2 5.5 . . .

Jane 2 Healthy B 1.7 5.6 . . .

Figure 2. Multidimensional view of clinical study data.

In this view, each row corresponds to an observation,
i.e., a biological sample with all its characteristics and
measurements performed. The draw column represents
the time point when the sample is taken, the clinical-
Cls (resp. drugCls) column represents the disease (resp.
drug) group which the subject belongs, and the mi’s
represent biological measurements. This example illus-
trates the fact that clinical study data have a natural
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There are even lucrative competitions!
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Lots of them actually...

Source: http://www.kaggle.com/
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So what is machine learning?

A machine learns with respect to a particular task T, performance metric P, and

type of experience E, if the system reliably improves its performance P at task T,

following experience E

— Tom Mitchell

The scientific study of algorithms and statistical models that computer systems

use to effectively perform a specific task without using explicit instructions,

relying on patterns and inference instead

— Wikipedia

Machines learn using flashcards
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

• Clustering - discovering groups having
similar attributes

• Density Estimation - determine the
distribution of data

• Dimensionality Reduction - identify and
remove redundant dimensions

applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.

Figure 1 shows this map for 17 clusters, together with the tree show-
ing how these clusters are related at coarser levels of the hierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depicts maps showing other levels of the hierarchical clustering.)
The correspondence between the genetic clusters and geography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales. Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples in Orkney from all
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distances between branches), including separation of north
and south Wales, then separation of the north of England, Scotland and
Northern Ireland from the rest of England, and separation of samples
in Cornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returned by fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.

Although larger than between the sampling locations, estimated FST

values between the clusters represented in Fig. 1 are small (average 0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data E Crown
copyright and database right 2012.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

• Clustering - discovering groups having
similar attributes

• Density Estimation - determine the
distribution of data

• Dimensionality Reduction - identify and
remove redundant dimensions

applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.

Figure 1 shows this map for 17 clusters, together with the tree show-
ing how these clusters are related at coarser levels of the hierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depicts maps showing other levels of the hierarchical clustering.)
The correspondence between the genetic clusters and geography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales. Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples in Orkney from all
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distances between branches), including separation of north
and south Wales, then separation of the north of England, Scotland and
Northern Ireland from the rest of England, and separation of samples
in Cornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returned by fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.

Although larger than between the sampling locations, estimated FST

values between the clusters represented in Fig. 1 are small (average 0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data E Crown
copyright and database right 2012.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

• Clustering - discovering groups having
similar attributes

• Density Estimation - determine the
distribution of data

• Dimensionality Reduction - identify and
remove redundant dimensions

applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.

Figure 1 shows this map for 17 clusters, together with the tree show-
ing how these clusters are related at coarser levels of the hierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depicts maps showing other levels of the hierarchical clustering.)
The correspondence between the genetic clusters and geography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales. Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples in Orkney from all
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distances between branches), including separation of north
and south Wales, then separation of the north of England, Scotland and
Northern Ireland from the rest of England, and separation of samples
in Cornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returned by fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.

Although larger than between the sampling locations, estimated FST

values between the clusters represented in Fig. 1 are small (average 0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data E Crown
copyright and database right 2012.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.

Figure 1 shows this map for 17 clusters, together with the tree show-
ing how these clusters are related at coarser levels of the hierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depicts maps showing other levels of the hierarchical clustering.)
The correspondence between the genetic clusters and geography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales. Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples in Orkney from all
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distances between branches), including separation of north
and south Wales, then separation of the north of England, Scotland and
Northern Ireland from the rest of England, and separation of samples
in Cornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returned by fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.

Although larger than between the sampling locations, estimated FST

values between the clusters represented in Fig. 1 are small (average 0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data E Crown
copyright and database right 2012.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

• Clustering - discovering groups having
similar attributes

• Density Estimation - determine the
distribution of data

• Dimensionality Reduction - identify and
remove redundant dimensions

applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.

Figure 1 shows this map for 17 clusters, together with the tree show-
ing how these clusters are related at coarser levels of the hierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depicts maps showing other levels of the hierarchical clustering.)
The correspondence between the genetic clusters and geography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales. Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples in Orkney from all
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distances between branches), including separation of north
and south Wales, then separation of the north of England, Scotland and
Northern Ireland from the rest of England, and separation of samples
in Cornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returned by fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.

Although larger than between the sampling locations, estimated FST

values between the clusters represented in Fig. 1 are small (average 0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data E Crown
copyright and database right 2012.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

• Clustering - discovering groups having
similar attributes

• Density Estimation - determine the
distribution of data

• Dimensionality Reduction - identify and
remove redundant dimensions

applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.

Figure 1 shows this map for 17 clusters, together with the tree show-
ing how these clusters are related at coarser levels of the hierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depicts maps showing other levels of the hierarchical clustering.)
The correspondence between the genetic clusters and geography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales. Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples in Orkney from all
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distances between branches), including separation of north
and south Wales, then separation of the north of England, Scotland and
Northern Ireland from the rest of England, and separation of samples
in Cornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returned by fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.

Although larger than between the sampling locations, estimated FST

values between the clusters represented in Fig. 1 are small (average 0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data E Crown
copyright and database right 2012.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

• Clustering - discovering groups having
similar attributes

• Density Estimation - determine the
distribution of data

• Dimensionality Reduction - identify and
remove redundant dimensions

applied fineSTRUCTURE to the PoBI samples’ genetic data without
reference to the known geographical locations. The genetic clustering
can be assessed with respect to geography by plotting individuals on a
map of the UK (at the centroid of their grandparents’ places of birth)
and examining the inferred genetic clusters, for different levels of the
hierarchical clustering.

Figure 1 shows this map for 17 clusters, together with the tree show-
ing how these clusters are related at coarser levels of the hierarchy. (There
is nothing special about this level of clustering, but it is convenient for
describing some of the main features of our analysis; Supplementary
Fig. 1 depicts maps showing other levels of the hierarchical clustering.)
The correspondence between the genetic clusters and geography is strik-
ing: most of the genetic clusters are highly localized, with many occu-
pying non-overlapping regions. Because the genetic clustering made
no reference to the geographical location of the samples, the resulting
correspondence between genetic clusters and geography reassures us
that our approach is detecting real population differentiation at fine
scales. Our approach can separate groups in close proximity, such as in
Cornwall and Devon in southwest England, where the genetic clusters
closely match the modern county boundaries, or in Orkney, off the
north coast of Scotland.

It is instructive to consider the tree that describes the hierarchical
splitting of the 2,039 genotyped individuals into successively finer clus-
ters (Fig. 1). The coarsest level of genetic differentiation (that is, the
assignment into two clusters) separates the samples in Orkney from all
others. Next the Welsh samples separate from the other non-Orkney
samples. Subsequent splits reveal more subtle differentiation (reflected
in the shorter distances between branches), including separation of north
and south Wales, then separation of the north of England, Scotland and
Northern Ireland from the rest of England, and separation of samples
in Cornwall from the large English cluster. There is a single large cluster
(red squares) that covers most of central and southern England and
extends up the east coast. Notably, even at the finest level of differen-
tiation returned by fineSTRUCTURE (53 clusters), this cluster remains
largely intact and contains almost half the individuals (1,006) in our
study.

Although larger than between the sampling locations, estimated FST

values between the clusters represented in Fig. 1 are small (average 0.002,
maximum 0.007, Supplementary Table 2), confirming that differenti-
ation is subtle. On the other hand, all comparisons between pairs of
clusters of their patterns of ancestry as estimated by fineSTRUCTURE
show highly significant differences (Supplementary Table 3).
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Figure 1 | Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. For each
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.
The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data E Crown
copyright and database right 2012.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Types of machine learning methods: Supervised learning

Inputs have corresponding output labels

• Classification - output is categorical

• Regression - output is continuous
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expectancy consistently increased with body mass (mean slope within or-
der of 0.191± 0.030, Figure 1). The allometric exponent, moreover, was
not far from 0.25, the exponent expected for biological time (Calder 1984).
For a given body mass, however, adult life expectancy differed markedly
among mammalian orders. Cetaceans (whales and dolphins), lagomorphs
(hares and rabbits), insectivores (shrews and hedgehogs), and rodents (squir-
rels) all had short adult life expectancy for their body mass (with intercepts
of –0.760, –0.582, –0.416, and –0.118, respectively). On the other hand,
primates (apes and monkeys) and bats had long adult life expectancy (with
intercepts of 0.912 and 0.699), while carnivores and ungulates had inter-
mediate values (with intercepts of 0.014 and 0.030). These findings support
the strong influence of body mass and phylogeny in accounting for varia-
tion of life span among vertebrate species. Indeed, similar positive allomet-
ric relationships seem to hold for all groups of vertebrates (see Gaillard et
al. 1989 on birds; Shine and Charnov 1992 on reptiles; and Rochet et al.
2000 on fishes). Among mammals, habitat type might also shape life span.
For a given mass, flying mammals (bats) had the longest adult life expect-
ancy, marine mammals (cetaceans) had the shortest life span, and all the
terrestrial orders showed intermediate values. However, such an ecological
correlate is more likely to reflect differential selective pressures on body
mass rather than direct selection on life span. If a large body mass is se-
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Statistics vs Machine Learning (not mutually exclusive)
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Statistics vs Machine Learning (not mutually exclusive)

Statistics

• Philosophy - provide humans a set of
data analysis tools

• Focus - what is the relationship
between the data and the outcome?

• Inference - how was the observed
data generated

• Learning - All measured data then
perform inference on the population

• Validation - Measures of fit (R2,
chi-square test)

• Selection - Adjusted measures of fit
(adjusted R2, Cp statistic, AIC)

Machine Learning

• Philosophy - replace humans in the
processing of data

• Focus - how can we predict the
outcome using the data?

• Prediction - how can we use
observed data to predict the future

• Learning - Training dataset then
perform predictions on testing dataset

• Validation - How well it predicts
“unseen” data (generalisation)

• Selection - Cross-validation and
out-of-bag errors
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Statistics and machine learning complement each other

The best solution could be an algorithmic model (machine learning), or maybe a

data model, or maybe a combination. But the trick to being a scientist is to be

open to using a wide variety of tools.

— Leo Breiman

The objective is not just to get a better fit to the data but to have a
predictive model that generalises well, that is, gives good predictions to
unseen data
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Terminology

Training Dataset: Used to train a set of models

Validation Dataset: Used for model selection and validation. Helps us to
select a parsimonous model i.e a model which is
complex enough to describe “well” our data but not
more complex

Testing Dataset: Used to compute the generalisation error. Evaluate
model performance on previously unseen data

Features: Covariates, Predictors, Inputs, Attributes

Training error: In sample error, Resubstitution error

Testing error: Out of sample error, Generlisation error
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A bird’s-eye view of machine learning
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