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Workshop learning outcomes

Understand the key concepts and terminology used in the field of
machine learning

Build predictive models for clustering and classification problems

Apply machine learning algorithms in R to a variety of real-world
datasets

e Recognise practical issues in data-driven modelling

Note: All workshop material can be found here:
https://exeter-data-analytics.github.io/
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Why are we here?

The infamous Big Data!
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Why are we here?

Data
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Water, water everywhere, nor any drop to drink

LET'S SOLVE THIS PROBLEM BY
USING THE BIG DATA NONE
T OF US HAVE THE SLIGHTEST
IDEA WHATTO DO WITH

® marketoonist.com
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Water, water everywhere, nor any drop to drink
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What's the problem?

Predicting fish

Olden et al. Q Rev Biol 2008, 83(2):171-193

Data: Lake surface area, shoreline perimeter, air temperature,
precipitation and elevation

Method: Decision trees (supervised)

Mean =67
n=823%

AREA<1.5 km’

v
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What's the problem?

Detection of malarial parasites

Purwar et al. Malar J 2011, 10:364

Data: Image intensity

Method: Modified k-means clustering (unsupervised)

N
7 oy % ~ l = Background Pixels
S ] -
S0 )
Figure 17 Parasites marked image. M T e o
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What's the problem?

Creating carbon-density maps

Baccini et al. Nature Clim. Change 2012, 2:182-185

Data:
Method:

Light detection and ranging (LiDAR) (elevation data)
Random forests (ensemble of decision trees) (supervised)
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Figure 1| C: ined i i y ion of tropical America, Africa and Asi i ‘The upper panels show
the frequency distribution of carbon in units of Mg C ha™! for each region. Inset f the bottom provide high I les of the spatial
detail present n the satellite-derived biomass data set. Carbon amount i represented in the maps as a colour scheme from dark brown (low carbon) to
dark green (high carbon). See upper panels for numeric values.
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What's the problem?

coustic classification of multiple simultaneous bird species
Briggs et al. J Acoust Soc Am 2012, 131(6):4640-4650

Data: Segments in spectrogram (time vs frequency) from 10 secs
audio recordings (corresponding to syllables of bird call)

Method: Multi-instance multi-label learning (supervised)

FIG. 3. (Color online) Extracting a
syllable from the segmentation
results. (a) The original spectrogram,
(b) the binary mask generated by our
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algorithm. The  high-
lighted segment will be further proc-
essed in this example. Note that
several other segments overlap in
time. (c) A cropped mask of the high-
lighted segment. (d) The masked and
cropped spectrogram corresponding
10 the highlighted segment.
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What my mum thinks machine learning is

Artificial \
Intelligence®

Terminator: - Rise of The Machines
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Who uses machine learning?

KINECT

FOR XBOX 360

amazoncom
n Youg('i: =
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Who uses machine learning

Machine Learning
in the Life Sciences

Machine Learning in Ecosystem Informatics and Sustainability

Thomas G. Dietterich
School of Electrical Engineering and Computer Science
Oregon State University
tgd@cs.orst.edu

How it is Used on a Wide Variety of
Mediical Problems and Data
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Vorume 83, No. 2 THE QUARTERLY REVIEW OF BIOLOGY JunE 2008

Data Analysis and Mining in the Life Sciences

MACHINE LEARNING METHODS WITHOUT TEARS: A PRIMER Nar?\IH‘UI’"
FOR ECOLOGISTS . Surro! gd. ne.
2375 Garcia Ave, Mountain View, CA 94043, USA

phuyn@surromed. com
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e are even lucrative competitions!

-
A _YHERITAGE PROW‘LER ngg Sign Up Inthe News Judging Panel Visit HPN "

Dashboard
+* + + + +* + ] + +* + + + + I * + * + +* +

Home

Data

) A r

Information

Description

Evaluation

Improve Healthcare,
Win $3,000,000.

Forum Identify patients who will be admitted to a
readerbonrd hospital within the next year using
prvate historical claims data. (Enter by 06:59:59
UTC Oct 4 2012)
Leaderboard
1. POWERDOT Please note: This competition is over! The leaderboard now displays the final

2. EXL Analytics results.
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Lots of them actually...

22 Active Competitions

Two Sigma: Using News to Predict Stock Movements $100,000
Use news analytics to predict stock price performance 2,927 teams
Featured news ag time series, finance,
Two siGHA
Jigsaw Unintended Bias in Toxicity Classification $65,000
Detect toxicity across a diverse range of conversations. 202 teams
wd Featured ases, nlp, text data
Customer i i $65,000
Can you identify who will make a transaction? 8,425 teams
Featured banking,tabular data,binary classifcation
LANL Earthquake Prediction $50,000
Gan you predict upcoming laboratory earthauabes? 2,220 teams
cs, signal processing
Gendered Pronoun Resolution $25,000
Pair pronouns to their correct entities. 595 teams
p, text dat
PetFinder.my Adoption Predictio $25,000
How cute s that dogoy in the shelter? 2,010 teams
[ ] Featured image data, t

Google Cloud & NCAA® ML Competition 2019-Women's $25,000

D Apply Machine Learning to NCAA® March Madness® 502 teams
Featured basketball, sport

Source: http://www.kaggle.com/
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So what is machine learning?
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So what is machine learning?

A machine learns with respect to a particular task T, performance metric P, and

type of experience E, if the system reliably improves its performance P at task T,
following experience E

— Tom Mitchell
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So what is machine learning?

A machine learns with respect to a particular task T, performance metric P, and

type of experience E, if the system reliably improves its performance P at task T,
following experience E

— Tom Mitchell)

The scientific study of algorithms and statistical models that computer systems
use to effectively perform a specific task without using explicit instructions,
relying on patterns and inference instead

— Wikipedia
v
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So what is machine learning?

A machine learns with respect to a particular task T, performance metric P, and

type of experience E, if the system reliably improves its performance P at task T,
following experience E

— Tom Mitchell)

The scientific study of algorithms and statistical models that computer systems
use to effectively perform a specific task without using explicit instructions,
relying on patterns and inference instead

— Wikipedia
v

Machines learn using flashcards
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Group by shape (unsupervised learning)
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Add labels (supervised learning)
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

e Clustering - discovering groups having
similar attributes
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Types of machine learning methods: Unsupervised learning

John Joseph Valletta

Scotland/  Central/south
north England  England

Orkney Wales

Figure 1| Clustering of the 2,039
UK individuals into 17 clusters
based only on genetic data. Foreach
individual, the coloured symbol
representing the genetic cluster to
which the individual is assigned is
plotted at the centroid of their
grandparents’ birthplaces. Cluster
names are in side-bars and ellipses
give an informal sense of the range of
each cluster (see Methods). No
relationship between clusters is
implied by the colours/symbols.

The tree (top right) depicts the order
of the hierarchical merging of
clusters (see Methods for the
interpretation of branch lengths).
Contains OS data © Crown
copyright and database right 2012.
© EuroGeographics for some
administrative boundaries.
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

e Clustering - discovering groups having
similar attributes

e Density Estimation me the ’”u@

distribution of data ' [
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machine learning methods: Unsupervised learning
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Types of machine learning methods: Unsupervised learning

Inputs have no corresponding output labels

e Clustering - discovering groups having
similar attributes

e Density Estimation - determine the '”‘w@ :
distribution of data Y ‘

¢ Dimensionality Reduction - identify and
remove redundant dimensions
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machine learning methods: Unsupervised learning
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Types of machine learning methods: Supervised learning

Inputs have corresponding output labels
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Types of machine learning methods: Supervised learning

Inputs have corresponding output labels

e Classification - output is categorical

John Joseph Valletta

probability density
0.4

0.1

0.0

0.3

0.2

susceptible

\

B

-2

0
antibody level

2 4

April 2019 20/1



Types of machine learning methods: Supervised learning

Inputs have corresponding output labels

susceptible

0.4

0.3

e Classification - output is categorical

probability density
3 0.2

:

0.0

—4 -2 0 2 4
antibody level

e Regression - output is continuous

In (adult body mass) (grams)
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Statistics vs Machine Learning (not mutually exclusive)

Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

nature

linear regression
Ve

Cox model

A priori
functional relationship

John Joseph Valletta
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Statistics vs Machine Learning (not mutually exclusive)

Statistics Machine Learning

v 4
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Statistics vs Machine Learning (not mutually exclusive)

Statistics Machine Learning

® Philosophy - provide humans a set of e Philosophy - replace humans in the
data analysis tools processing of data

v 4
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Statistics vs Machine Learning (not mutually exclusive)

Statistics Machine Learning

® Philosophy - provide humans a set of e Philosophy - replace humans in the
data analysis tools processing of data
® Focus - what is the relationship ® Focus - how can we predict the
between the data and the outcome? outcome using the data?
v v
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Statistics Machine Learning
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perform inference on the population perform predictions on testing dataset
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Statistics vs Machine Learning (not mutually exclusive)

Statistics Machine Learning

® Philosophy - provide humans a set of e Philosophy - replace humans in the
data analysis tools processing of data

® Focus - what is the relationship ® Focus - how can we predict the
between the data and the outcome? outcome using the data?

® Inference - how was the observed ® Prediction - how can we use
data generated observed data to predict the future

® Learning - All measured data then ® Learning - Training dataset then
perform inference on the population perform predictions on testing dataset

e Validation - Measures of fit (R?, e Validation - How well it predicts
chi-square test) “unseen” data (generalisation)

e Selection - Adjusted measures of fit e Selection - Cross-validation and
(adjusted R?, Cp statistic, AIC) out-of-bag errors
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Statistics and machine learning complement each other

The best solution could be an algorithmic model (machine learning), or maybe a
data model, or maybe a combination. But the trick to being a scientist is to be
open to using a wide variety of tools.

— Leo Breiman

The objective is not just to get a better fit to the data but to have a

predictive model that generalises well, that is, gives good predictions to
unseen data
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Terminology
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Terminology

Training Dataset: Used to train a set of models
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Terminology

Training Dataset: Used to train a set of models

Validation Dataset: Used for model selection and validation. Helps us to
select a parsimonous model i.e a model which is
complex enough to describe “well” our data but not
more complex
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Terminology

Training Dataset:

Validation Dataset:

Testing Dataset:

John Joseph Valletta

Used to train a set of models

Used for model selection and validation. Helps us to
select a parsimonous model i.e a model which is
complex enough to describe “well” our data but not
more complex

Used to compute the generalisation error. Evaluate
model performance on previously unseen data
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Terminology

Training Dataset:

Validation Dataset:

Testing Dataset:
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Used to train a set of models

Used for model selection and validation. Helps us to
select a parsimonous model i.e a model which is
complex enough to describe “well” our data but not
more complex

Used to compute the generalisation error. Evaluate
model performance on previously unseen data

Covariates, Predictors, Inputs, Attributes
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Terminology

Training Dataset:

Validation Dataset:

Testing Dataset:

Features:

Training error:
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Used to train a set of models

Used for model selection and validation. Helps us to
select a parsimonous model i.e a model which is
complex enough to describe “well” our data but not
more complex

Used to compute the generalisation error. Evaluate
model performance on previously unseen data

Covariates, Predictors, Inputs, Attributes

In sample error, Resubstitution error
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Terminology

Training Dataset:

Validation Dataset:

Testing Dataset:

Features:
Training error:

Testing error:
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Used to train a set of models

Used for model selection and validation. Helps us to
select a parsimonous model i.e a model which is
complex enough to describe “well” our data but not
more complex

Used to compute the generalisation error. Evaluate
model performance on previously unseen data

Covariates, Predictors, Inputs, Attributes
In sample error, Resubstitution error

Out of sample error, Generlisation error

April 2019 24 /1



A bird's-eye view of machine learning

| Raw data |

Data + Deal with missing data (ignore/impute)
*+ Use unsupervised methods to accentuate the data’s structure

exploration [+ Remove uninformative variables (crude filtering)

Feature |* Hand-crafted features
+ Dimensionality reduction techniques

extraction [+ reatures are typically normalized/standardized

N

Training Testing
data set data set
Supervised Predict
learning || Frecictive
model
model =
algorithm(features)

* Cross-validation
* Feature selection

Generalisation error
Predictive performance
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