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Overview

What is supervised learning?

Cross-validation

k-nearest neighbour (kN N)
e Decision trees

Random forests

Support vector machines
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What's the problem?
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What's the problem?

https://www.livescience.com/23310-serengeti.html
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Counting wildebeest
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What is supervised learnin

Supervised learning methods determine the mapping (predictive model)
between a set of features and a continuous outcome (regression), or a
categorical variable (classification)
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Bias-variance tradeoff

e Machine learning algorithms are very flexible in order to deal with
complex data

e So how well should we fit to the training data to get good
generalisation?

e Driving the training error to zero is not a good idea
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Bias-variance tradeoff

e Machine learning algorithms are very flexible in order to deal with

complex data
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Bias-variance tradeoff

e Machine learning algorithms are very flexible in order to deal with
complex data

e So how well should we fit to the training data to get good
generalisation?

e Driving the training error to zero is not a good idea

Underfitting (high bias) Parsimonious (‘optimal’ model) Overfitting (high variance)
N7+ observations 7 - observations 1 observations
=== model fit == model fit model fit
. .

> o4

-1
-1

-2
-2
L

-2

John Joseph Valletta April 2019 6/1



Cross-validation

e The flexibility of ML models is constrained by tuning their
hyperparameters

o k-fold cross-validation allow us to find optimal hyperparameters
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Cross-validation

e The flexibility of ML models is constrained by tuning their
hyperparameters

o k-fold cross-validation allow us to find optimal hyperparameters
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Predictive performance measures

e To compare models during cross-validation predictive performance
measures are computed

e Several metrics exist, some of the more popular ones are:

o Regression: root mean squared error (RMSE), R-squared
e Classification: area uder the ROC curve, confusion matrix
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k-nearest neighbour (KNN)
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k-nearest neighbour (KNN)

@ Calculate distance between test point and every training data point
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k-nearest neighbour (KNN)

@ Calculate distance between test point and every training data point

® Find the k training points closest to test point
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k-nearest neighbour (KNN)

@ Calculate distance between test point and every training data point
® Find the k training points closest to test point

© Assign test point the majority vote of their class label
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earest neighbour

1-nearest neighbour
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nearest neighbour

5-nearest neighbour
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earest neighbour

15-nearest neighbour

sepal length (cm)
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nearest neighbour

30-nearest neighbour
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k-nearest neighbour

Simple and intuitive

Works for multi-class problems

Non-linear decision boundaries

k easily tuned by cross-validation

Can be computationally expensive, as for every test point, distance to
every training data point needs to be computed

Takes up a lot of storage as all training points need to be retained
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Decision trees
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Decision trees

@ Find the yes/no rule that best splits the data with respect to one of
the features
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Decision trees

@ Find the yes/no rule that best splits the data with respect to one of
the features

® The best split is the one that produces the most homogeneous
groups; found by maximising information gain/lowering entropy.
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Decision trees

@ Find the yes/no rule that best splits the data with respect to one of
the features

® The best split is the one that produces the most homogeneous
groups; found by maximising information gain/lowering entropy.

© Repeat steps 1 to 2 until all data are correctly classified or some
stopping rule reached.
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Decision trees
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Decision boundaries
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Decision trees

Pros

e Model is very easy to explain to non-experts and can be directly used
to generate rules

e Computationaly inexpensive to train, evaluate and store

Handle both categorical and continuous data

Robust to outliers

Can easily overfit the data

Predictive accuracy can be poor
Linear decision boundaries

Small changes to training data may lead to a completely different tree
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Random forests
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Random forests

o Decision trees are intuitive but suffer from overfitting which
significantly affect their predictive accuracy
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Random forests

o Decision trees are intuitive but suffer from overfitting which
significantly affect their predictive accuracy

e Pruning, to “trim" the tree back, help reduce this overfit

e Ensemble methods such as Random Forests are a better alternative

¢ Rationale: Instead of one tree, grow a forest, where every bushy tree
(no pruning) is a bit different, then average predictions over all trees

John Joseph Valletta April 2019 16 /1



Random forests
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Random forests

@ Grow T decorrelated trees (no pruning)
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Random forests

@ Grow T decorrelated trees (no pruning)

® Forest randomness is induced by:

o Bagging (Bootstrap AGGregatING), each tree is trained on a subset
of the data randomly sampled with replacement
e Considering only a subset of predictors as candidates for each split
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Random forests

@ Grow T decorrelated trees (no pruning)

® Forest randomness is induced by:

o Bagging (Bootstrap AGGregatING), each tree is trained on a subset
of the data randomly sampled with replacement
e Considering only a subset of predictors as candidates for each split

© Average predictions from all T trees.
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De-correlated trees
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De-correlated trees

Sepal.Width >= 2.8
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Variable importance

o Cannot visualise decision boundaries (loss of interpretability)

e However, variable importance helps us perform feature selection

Petal.Width o Petal.Width o
Petal.Length o Petal.Length o
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Random forests

o State-of-the-art predictive accuracy

e Can handle thousands of both categorical and continuous predictors
without variable deletion

e Robust to outliers

o Estimates the importance of every predictor

e Out-of-bag error (unbiased estimate of test error for every tree built)
e Can cope with unbalanced datasets by setting class weights

e Trivially parallelisable

e Harder to interpret then plain decision trees
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Support vector machines (SVMs)
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Maximal margin classifier

Rationale: Maximise the margin
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Support vector classifiers

Rationale: Use a soft margin
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Support vector machines

Real-life data is complex and often we cannot find a separating hyperplane
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Support vector machines

Rationale: Map data to a higher dimensional space where classes are
linearly separable
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Support vector machines: 1D to 2D

1D (original) data is not linearly separable
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Support vector machines - the kernel trick

e So our solution is to blow up the dimensions?
e But what about the “curse of dimensionality”?

e Very computationally expensive to work in high dimensions
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Support vector machines - the kernel trick

e So our solution is to blow up the dimensions?

But what about the “curse of dimensionality”?

Very computationally expensive to work in high dimensions

Kernel trick to the rescue!

Work in an implict feature space

Data is never explicitly computed in higher dimensions

Think about kernels as generalised distance measures

p.s Kernel methods are mathematically intricate and beyond the scope of this

introductory workshop
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Support vector machines

® Choose a kernel

® Run optimiser to find the maximum margin separating hyperplane
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Support vector machines

® Choose a kernel

® Run optimiser to find the maximum margin separating hyperplane

SVMs are inherently binary classifiers. The most common ways to deal
with multi-class problems is by building several one-versus-all or
one-versus-one classifiers.
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Linear kernel
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Support vector

machines

Radial Basis Function (Gaussian) kernel
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Support vector machines

Pros

e State-of-the-art predictive accuracy
o Low storage requirements (only support vectors to store)

e A vast array of kernels are available that are flexible enough to cater
for any type of data

Global optimum guaranteed

Model is hard to interpret

Feature space cannot be visualised
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