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Why reduce the dimensionality of the problem?

Visualise the data to uncover structure

Elucidate the best predictors of the underlying process (plausible
causal drivers under an experimental setup)

Improve the model’s predictive performance by removing
uninformative features/extracting better features

Decrease computational power
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Dimensionality Reduction

Rationale

Although the data may seem high dimensional, the structure of the data
can be represented by fewer features.
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Dimensionality Reduction

Rationale
Although the data may seem high dimensional, the structure of the data

can be represented by fewer features.

Dimensionality reduction can be achieved through:
o Feature extraction: mapping the original data to a new feature set

o Feature selection: selecting a subset of attributes
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Principal Component Analysis

e A linear dimensionality reduction method

e The new uncorrelated features (PCA 1, PCA 2,...) are weighted
(w's) linear combinations of the original data (z's)

PCA 1 =wy1z1 + wioxe + ... + W1pTp

PCA 2 = wo11 + warxo + ... + wopx)p

PCA p = wp1w1 + wpae + ... + WppTp

e Objective is to find directions, called principal components, that
maximise the variance of the data
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Principal Component Analysis
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

¢ A non-linear dimensionality reduction method

¢ Projects data into a lower-dimensional space/embedding such that
the original high-dimensional clustering is preserved
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t-SNE on handwritten digits
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L. Van der Maaten and G. Hinton. (2008) Journal of Machine Learning Research
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t-SNE on flow cytometry data
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Y. Bediako, R. Adams, A. Reid, J.J. Valletta, F. Ndungu et al. (2019) BMC Medicine

John Joseph Valletta April 2019 8/9



Comparison of methods

PCA on “raw” features PCA on HOG features
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J.J. Valletta et al. (2017) Animal Behaviour
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