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Overview

• What is supervised learning?

• Cross-validation

• k-nearest neighbour (kNN)

• Decision trees

• Random forests

• Support vector machines
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What’s the problem?

https://www.livescience.com/23310-serengeti.html
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Counting wildebeest
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What is supervised learning?

Supervised learning methods determine the mapping (predictive model)
between a set of features and a continuous outcome (regression), or a
categorical variable (classification)
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Bias-variance tradeoff

• Machine learning algorithms are very flexible in order to deal with
complex data

• So how well should we fit to the training data to get good
generalisation?

• Driving the training error to zero is not a good idea
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Cross-validation

• The flexibility of ML models is constrained by tuning their
hyperparameters

• k-fold cross-validation allow us to find optimal hyperparameters
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Predictive performance measures

• To compare models during cross-validation predictive performance
measures are computed

• Several metrics exist, some of the more popular ones are:
• Regression: root mean squared error (RMSE), R-squared
• Classification: area uder the ROC curve, confusion matrix
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k-nearest neighbour (kNN)

1 Calculate distance between test point and every training data point

2 Find the k training points closest to test point

3 Assign test point the majority vote of their class label
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k-nearest neighbour
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k-nearest neighbour

Pros
• Simple and intuitive

• Works for multi-class problems

• Non-linear decision boundaries

• k easily tuned by cross-validation

Cons
• Can be computationally expensive, as for every test point, distance to
every training data point needs to be computed

• Takes up a lot of storage as all training points need to be retained
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Decision trees

1 Find the yes/no rule that best splits the data with respect to one of
the features

2 The best split is the one that produces the most homogeneous
groups; found by maximising information gain/lowering entropy.

3 Repeat steps 1 to 2 until all data are correctly classified or some
stopping rule reached.
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Decision trees
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Decision boundaries
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Decision trees

Pros
• Model is very easy to explain to non-experts and can be directly used

to generate rules

• Computationaly inexpensive to train, evaluate and store

• Handle both categorical and continuous data

• Robust to outliers

Cons
• Can easily overfit the data

• Predictive accuracy can be poor

• Linear decision boundaries

• Small changes to training data may lead to a completely different tree
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Random forests

• Decision trees are intuitive but suffer from overfitting which
significantly affect their predictive accuracy

• Pruning, to “trim” the tree back, help reduce this overfit

• Ensemble methods such as Random Forests are a better alternative

• Rationale: Instead of one tree, grow a forest, where every bushy tree
(no pruning) is a bit different, then average predictions over all trees

⇒

John Joseph Valletta Supervised Learning April 2019 16 / 1



Random forests

• Decision trees are intuitive but suffer from overfitting which
significantly affect their predictive accuracy

• Pruning, to “trim” the tree back, help reduce this overfit

• Ensemble methods such as Random Forests are a better alternative

• Rationale: Instead of one tree, grow a forest, where every bushy tree
(no pruning) is a bit different, then average predictions over all trees

⇒

John Joseph Valletta Supervised Learning April 2019 16 / 1



Random forests

• Decision trees are intuitive but suffer from overfitting which
significantly affect their predictive accuracy

• Pruning, to “trim” the tree back, help reduce this overfit

• Ensemble methods such as Random Forests are a better alternative

• Rationale: Instead of one tree, grow a forest, where every bushy tree
(no pruning) is a bit different, then average predictions over all trees

⇒

John Joseph Valletta Supervised Learning April 2019 16 / 1



Random forests

• Decision trees are intuitive but suffer from overfitting which
significantly affect their predictive accuracy

• Pruning, to “trim” the tree back, help reduce this overfit

• Ensemble methods such as Random Forests are a better alternative

• Rationale: Instead of one tree, grow a forest, where every bushy tree
(no pruning) is a bit different, then average predictions over all trees

⇒

John Joseph Valletta Supervised Learning April 2019 16 / 1



Random forests

• Decision trees are intuitive but suffer from overfitting which
significantly affect their predictive accuracy

• Pruning, to “trim” the tree back, help reduce this overfit

• Ensemble methods such as Random Forests are a better alternative

• Rationale: Instead of one tree, grow a forest, where every bushy tree
(no pruning) is a bit different, then average predictions over all trees

⇒
John Joseph Valletta Supervised Learning April 2019 16 / 1



Random forests

1 Grow T decorrelated trees (no pruning)

2 Forest randomness is induced by:
• Bagging (Bootstrap AGGregatING), each tree is trained on a subset

of the data randomly sampled with replacement
• Considering only a subset of predictors as candidates for each split

3 Average predictions from all T trees.
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De-correlated trees
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De-correlated trees
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Variable importance

• Cannot visualise decision boundaries (loss of interpretability)

• However, variable importance helps us perform feature selection
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Random forests

Pros
• State-of-the-art predictive accuracy

• Can handle thousands of both categorical and continuous predictors
without variable deletion

• Robust to outliers

• Estimates the importance of every predictor

• Out-of-bag error (unbiased estimate of test error for every tree built)

• Can cope with unbalanced datasets by setting class weights

• Trivially parallelisable

Cons
• Harder to interpret then plain decision trees
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Support vector machines (SVMs)

Which is the best separating line?
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Maximal margin classifier

Rationale: Maximise the margin
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Support vector classifiers

Rationale: Use a soft margin
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Support vector machines

Real-life data is complex and often we cannot find a separating hyperplane

●●

●
●●

●
●

●
●

●

●

●

● ●

●
●

● ●

● ●

●

● ●

● ●

● ●
● ●

●
●
●●

●

●

●

●

●●

●

5 6 7 8 9 10 11

5
6

7
8

9
10

11

x1

x2

●

●●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●

●

John Joseph Valletta Supervised Learning April 2019 24 / 1



Support vector machines

Rationale: Map data to a higher dimensional space where classes are
linearly separable
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Support vector machines: 1D to 2D
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Support vector machines - the kernel trick

• So our solution is to blow up the dimensions?

• But what about the “curse of dimensionality”?

• Very computationally expensive to work in high dimensions

• Kernel trick to the rescue!

• Work in an implict feature space

• Data is never explicitly computed in higher dimensions

• Think about kernels as generalised distance measures

p.s Kernel methods are mathematically intricate and beyond the scope of this

introductory workshop
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• Data is never explicitly computed in higher dimensions

• Think about kernels as generalised distance measures

p.s Kernel methods are mathematically intricate and beyond the scope of this
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Support vector machines

1 Choose a kernel

2 Run optimiser to find the maximum margin separating hyperplane

SVMs are inherently binary classifiers. The most common ways to deal
with multi-class problems is by building several one-versus-all or
one-versus-one classifiers.
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Support vector machines
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Support vector machines

Pros
• State-of-the-art predictive accuracy

• Low storage requirements (only support vectors to store)

• A vast array of kernels are available that are flexible enough to cater
for any type of data

• Global optimum guaranteed

Cons
• Model is hard to interpret

• Feature space cannot be visualised
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