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Overview

• What is clustering?

• Major types of clustering methods

• k-means clustering

• Agglomerative hierarchical clustering

• Gaussian mixture models

• How do we determine the “correct” number of clusters?
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What’s the problem?

Well, it’s driven by your data, e.g which of these genes are co-regulated?

We want to find some underlying structure in the data → Clustering
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What problems can clustering solve?

Gene expression: discovering co-regulated genes

Biological systematics: finding organisms sharing similar attributes

Computer vision: segmenting a digital image for object recognition

Epidemiology: identifying geographical clusters of diseases

Medical imaging: differentiating between tissues

Mathematical chemistry: grouping compounds by topological indices

Market basket analysis : which group of items are bought together

Cybersecurity : detecting fraudulent activity

... and much more!
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What is clustering?

Formal definition

Identifying homogeneous and well separated groups of data points
(features) by some similarity measure

Informal definition

The process of stereotyping your data
e.g these are round(ish) faces, these are short(ish) people

But how many groups?

An unsolved problem. Issue lies in the subjectivity of the word similar and
its mathematical definition
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Are they similar?
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Are they similar?
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What are we after?

Motivation: How is the data structured? Any outliers?

Goals: High intra-cluster similarity and low inter-cluster similarity
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Major types of clustering methods

Partitional: The data (feature) space is
partitioned into k regions

Hierarchical: Iteratively merging small
clusters into larger ones
(agglomerative) or breaking
large clusters into smaller
ones (divisive)

Distribution-based: Fit k multivariate statistical
distributions
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Similarity measures

• A distance metric quantifies how close two data points are

• Several ways to define this distance which has a direct impact on the
clustering result

eu
cl
id
ea
n

manhattan

gene expression value
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k-means clustering

1 Select k centroids at random

2 Calculate distance between centroids and each data point

3 Assign each data point to the closest centroid

4 Compute new centroids; the average of all data points in that cluster

5 Repeat steps 2 to 4 until data points remain in the same cluster or
some maximum number of iterations reached

Note: k-means clustering should only be used with continuous data
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k-means clustering
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k-means clustering
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k-means clustering
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k-means clustering

Pros
• Simple and intuitive

• Computationally inexpensive/fast

Cons
• What is k?

• Only applicable to continuous data where a mean is defined

• No guarantee of a global optimum solution
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Agglomerative hierarchical clustering

1 Assign each data point as its own cluster

2 Compute distance between each cluster

3 Merge the closest pair into a single cluster

4 Repeat 2 to 3 until you’re left with one cluster

Note: Step 3 is key, the distance method and linkage function dictate the
final result

John Joseph Valletta Clustering April 2019 14 / 1



Agglomerative hierarchical clustering

1 Assign each data point as its own cluster

2 Compute distance between each cluster

3 Merge the closest pair into a single cluster

4 Repeat 2 to 3 until you’re left with one cluster

Note: Step 3 is key, the distance method and linkage function dictate the
final result

John Joseph Valletta Clustering April 2019 14 / 1



Agglomerative hierarchical clustering

1 Assign each data point as its own cluster

2 Compute distance between each cluster

3 Merge the closest pair into a single cluster

4 Repeat 2 to 3 until you’re left with one cluster

Note: Step 3 is key, the distance method and linkage function dictate the
final result

John Joseph Valletta Clustering April 2019 14 / 1



Agglomerative hierarchical clustering

1 Assign each data point as its own cluster

2 Compute distance between each cluster

3 Merge the closest pair into a single cluster

4 Repeat 2 to 3 until you’re left with one cluster

Note: Step 3 is key, the distance method and linkage function dictate the
final result

John Joseph Valletta Clustering April 2019 14 / 1



Agglomerative hierarchical clustering

1 Assign each data point as its own cluster

2 Compute distance between each cluster

3 Merge the closest pair into a single cluster

4 Repeat 2 to 3 until you’re left with one cluster

Note: Step 3 is key, the distance method and linkage function dictate the
final result

John Joseph Valletta Clustering April 2019 14 / 1



Hierarchical clustering: Link method

How do we compute the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in
k-means)

Single: distance between closest pair of
points

Complete: distance between furthest pair of
points

Average: mean pairwise distance between
all points

+
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Hierarchical clustering in gene expression studies
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Hierarchical clustering

Pros
• No need to specify k

• Results can be visualised nicely irrespective of number of dimensions

• Sub-groups within larger clusters can be easily identified

Cons
• Can be computationally expensive

• Interpretation is subjective. Where should we draw the line (to
separate clusters)?

• Choice of distance method and linkage function can significantly
change the result
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Gaussian mixture models

1 Fit k multivariate Gaussian distributions

The Expectation-Maximisation (EM) algorithm is used to estimate the
parameters πi (mixing coefficients), µi and σi

p(x) =

k∑
i=1

πiN (x|µi,Σi) and

k∑
i=1

πi = 1

Can be seen as a “soft” version of k-means because every point is part of
every cluster but with varying levels of membership
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Gaussian mixture models
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Gaussian mixture models
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Gaussian mixture models

Pros
• Intuitive interpretation

• Computationally inexpensive

Cons
• What is k?

• Strong assumption on the data (normality)

• No guarantee of a global optimum solution

• Fails when number of features is much greater than observations
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Determining the “correct” number of clusters?

Short answer: you can’t

Because data is unlabelled the correct number of k is ambiguous

However, we can plot some indices as a function of k to help us evaluate
cluster validity:

• Within and between clusters sum-of-squares distances

• Akaike Information Criterion (AIC) or Bayesian Information Criterion
(BIC) when using distribution-based methods

• Silhouette plots
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Determining the “correct” number of clusters?
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Determining the “correct” number of clusters?
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Determining the “correct” number of clusters?

• These methods only give us a ballpark range for the “correct”
number of clusters

• Ultimately one needs to make use of prior knowledge

• Are the clusters practically relevant?

• Do they make sense?

• E.g how many different phenotypes are you expecting in your
population?
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