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Intended Learning Outcomes
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By the end of this lecture you will:

• Know what clustering is 

• Understand the basic principles of unsupervised machine learning

• Have a broad overview of different algorithms and what they can be used for

• Appreciate the key drawback of clustering – defining the number of clusters



• What is clustering? 

• Major types of clustering methods 

• Clustering algorithms

• k-means clustering 

• Agglomerative hierarchical clustering 

• Gaussian mixture models 

• Self-Organizing Maps

• How do we determine the “correct” number of clusters? 

Overview
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• Gene expression: discovering co-regulated genes

• Computer vision: segmenting a digital image for object recognition 

• Epidemiology: identifying geographical clusters of diseases 

• Geochemistry: similar elements explain geological processes

• Automated mapping: spatial geological or environmental data

• Engineering: predicting rock hardness and drilling requirements

• Market analysis: Amazon, Google, Netflix

• Risk assessment: insurance companies

What can clustering do?
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What is clustering?

C M Yeomans Introduction 6

• Formal definition: Identifying homogeneous and well separated groups of data 

points (features) by some similarity measure

• Informal: The process of stereotyping your data 

e.g these are round(ish) faces, these are short(ish) people

• How many clusters: An unsolved problem. Issue lies in the subjectivity of the 

word similar and its mathematical definition



What makes a ‘good’ clustering?
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What makes a ‘good’ clustering?
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What makes a ‘good’ clustering?
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• Aim: Identify data structure and any outliers
• Optimisation: High intra-cluster similarity and low inter-cluster similarity



Types of Clustering
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• Partitional: separating the feature space into k regions
• Hierarchical: Iterative merging (agglomerative) or breaking (divisive) of clusters 
• Distribution-based: Fit k multivariate statistical distributions
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Types of Clustering
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• All types of clustering use some form of distance metric to gauge similarity (or 
dissimilarity)
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k-means algorithm
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1. Define parameters: k, the number of cluster centroids

2. Randomise: randomly select starting point for k centroids

3. Similarity: calculate distance between points

4. Cluster: assign points to nearest centroid

5. Optimise: re-calculate centroid based on new point assignment

6. Iterate: repeat steps 3-5 until change threshold or maximum iterations are reached



k-means algorithm
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k-means algorithm
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k-means algorithm
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k-means algorithm
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k-means algorithm
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k-means algorithm
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k-means algorithm
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Pros

• Simple and intuitive

• Computationally inexpensive/fast 

Cons

• What is k? 

• Only applicable to continuous data where a mean is defined 

• No guarantee of a global optimum solution

See also, fuzzy c-means algorithm



Hierarchical clustering algorithms
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• Agglomerative clustering is the most common

• Measures distance through a linkage function

Centroid Single Complete Average

+



Hierarchical clustering algorithms
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Hierarchical clustering algorithms
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Pros

• No need to specify k

• Results can be visualised nicely irrespective of number of dimensions

• Sub-groups within larger clusters can be easily identified 

Cons

• Can be computationally expensive 

• Interpretation is subjective. Where should we draw the line (to separate clusters)? 

• Choice of distance method and linkage function can significantly change the result 



Gaussian Mixture Models
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• Fitting k multivariate Gaussian distributions to explain clusters
• Distance is calculated with Expectation-Maximisation (EM) algorithm 
• Every point is part of every cluster with varying levels of membership 
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Gaussian Mixture Models
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Pros

• Intuitive interpretation

• Computationally inexpensive

Cons

• Unknown k

• Assumption of normality

• No guarantee of a global optimum solution

• Fails when number of features is much greater than observations 



Self-Organizing Maps
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• Akin to an unsupervised artificial 

neural network

• Constrained version of k-means using 

topology to create a 2D map

• Topology uses vector quantisation 

and vector similarity to map multi-

dimensional space

• Each resulting node has a 

membership for each input feature



Self-Organizing Maps
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Pros

• Allows non-linear clustering

• Easy visualisation

• Acts to reduce dimensionality

Cons

• User defined topologies are highly subjective

• Number of nodes in 2D map can be iterative

• Not the most computationally efficient method



How many clusters are required?
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Determining the ‘correct’ number of clusters is essentially impossible

With unlabelled data, k is ambiguous

Some statistical methods are available to guide the decision:

• Sum-of-squares distances 

• Akaike’s Information Criterion / Bayesian Information Criterion

• Silhouette plots



How many clusters are required?
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How many clusters are required?
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• These methods are a guide

• Are the clusters practically relevant? 

• Do they make sense? 

• Using prior knowledge is not just acceptable, it is necessary

E.g how many different phenotypes are you expecting in your population?

E.g can you separate intrusive rocks from their extrusive equivalents?


