
Data Wrangling (Made Easy) in R Workshop

T. J. McKinley (t.mckinley@exeter.ac.uk)

1

Recap: ‘Tidy’ data

Specifically, a tidy data set is one in which:

• rows contain different observations;
• columns contain different variables;
• cells contain values.

Remember:
“Tidy datasets are all alike but every messy dataset is
messy in its own way.”—Hadley Wickham

2

The tidyverse

In the previous session we explored the use of ggplot2 to
produce visualisations of complex data sets.

This utilised the fact that the data sets we had available were
‘tidy’ (in the Wickham sense)!

However, it is estimated that data scientists spend around
50-80% of their time cleaning and manipulating data.

In this session we will explore the use of other tidyverse
packages, such as dplyr and tidyr, that facilitate effective
data wrangling.

3

Cheat sheets

As before, useful cheat sheets can be found at:

https://www.rstudio.com/resources/cheatsheets/

I would highly recommend downloading the appropriate ones
(note that they do get updated from time-to-time as the
packages are further developed).

4

mailto:t.mckinley@exeter.ac.uk
http://hadley.nz/
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0
https://www.rstudio.com/resources/cheatsheets/

Further reading

I would highly recommend Hadley Wickham and Garrett Grolemund’s
“R for Data Science” book:

Can be bought as a hard copy, or a link to a free HTML version is here.
5

Structure of the workshop

Full (and more comprehensive notes) are provided at:

https://exeter-data-analytics.github.io/AdVis/

You are encouraged to go through these in more detail outside
of the workshop.

Today we will discuss the main concepts, and work through
some (although not all) of the examples in Section 2 of the
notes.

I would encourage you to work from the HTML here, but a PDF is
available as a link in the HTML notes. 6

RStudio server

CLES have kindly offered the use of their RStudio server in case
anyone needs it:

https://rstudio04.cles.ex.ac.uk

Please note that this server is only for use for this workshop,
unless you otherwise have permission to use it .

You will need to log-in using your University log-in details.

7

What we’re aiming for…

US

Mexico

Germany

11000 5700 0 5700 11000

0−45−910−1415−1920−2425−2930−3435−3940−4445−4950−5455−5960−6465−6970−7475−7980+

0−45−910−1415−1920−2425−2930−3435−3940−4445−4950−5455−5960−6465−6970−7475−7980+

0−45−910−1415−1920−2425−2930−3435−3940−4445−4950−5455−5960−6465−6970−7475−7980+

Population counts (x1000)

A
ge

 (
yr

s) Sex

female

male

8

https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://exeter-data-analytics.github.io/AdVis/
https://rstudio04.cles.ex.ac.uk

Basic operations

We will assume here that we are working with data.frame1
objects2. Common data wrangling tasks include:

• sorting;
• filtering;
• selecting columns;
• transforming columns.

1or tibble—see later
2note that the purrr package provides functionality to wrangle different
types of object, such as standard lists. We won’t cover these here, but see
Hadley’s book, or the tutorials on the tidyverse website for more details

9

Basic operations

These basic operators all have an associated function:

• sorting:
• filtering:
• selecting columns:
• transforming columns:

• arrange();
• filter();
• select();
• mutate().

However, each of these operations can be done in base R. So
why bother to use these functions at all?

10

Why bother?

1. These functions are written in a consistent way: they all take a
data.frame/tibble objects as their initial argument and
return a revised data.frame/tibble object.

2. Their names are informative. In fact they are verbs,
corresponding to us doing something specific to our data. This
makes the code much more readable, as we will see
subsequently.

3. They do not require extraneous operators: such as $ operators to
extract columns, or quotations around column names.

4. Functions adhering to these criteria can be developed and
expanded to perform all sorts of other operations, such as
summarising data over groups.

5. They can be used in pipes (see later).

11

Aside: tibbles

tidyverse introduces a new object known as a tibble.
Paraphrased from the tibble webpage:

A tibble is an opinionated data.frame; keeping the
bits that are effective, and throwing out what is not.
Tibbles are lazy and surly: they do less (i.e. they don’t
change variable names or types, and don’t do partial
matching) and complainmore (e.g. when a variable does
not exist). This forces you to confront problems earlier,
typically leading to cleaner, more expressive code.3.

3tibbles also have an enhanced print() method
12

https://www.tidyverse.org/

Aside: tibbles

The readr package (part of tidyverse) introduces a read_csv()4
function to read .csv files in as tibble objects e.g.
gapminder <- read_csv(”gapminder.csv”)
gapminder

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<chr> <chr> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
... with 1,694 more rows
4note the underscore (read_csv) not read.csv()

13

Aside: tibbles

Notice:

• read_csv() does not convert characters into factors
automatically;

• the print() method includes information about the type
of each variable (e.g. integer, logical, character etc.),
as well as information on the number of rows and columns.

There is also an as.tibble() function that will convert
standard data.frame objects into tibbles.

In almost all of the tidyverse functions, you can use
data.frame or tibble objects interchangeably.

14

Example: Superheroes

These data have been extracted from some data scraped by
FiveThirtyEight, and available here.

We will assume the complete data consist of three tables:

• comics: a table of characters and characteristics;
• publisher: a table of characters and who publishes them
(Marvel or DC);

• year_published: characters against the year they were
first published.

15

Example: Superheroes

Let’s have a look at the comics data frame:
comics

name EYE HAIR APPEARANCES
1 Batman Blue Eyes Black Hair 3093
2 Wonder Woman Blue Eyes Black Hair 1231
3 Jakeem Williams Brown Eyes <NA> 79
4 Spider-Man Hazel Eyes Brown Hair 4043
5 Susan Storm Blue Eyes Blond Hair 1713
6 Namor McKenzie Green Eyes Black Hair 1528

16

https://fivethirtyeight.com/
https://github.com/fivethirtyeight/data/tree/master/comic-characters
https://www.marvel.com/
https://www.dccomics.com/

Example: Superheroes

To extract a subset of these data, we can use the filter()
function e.g.

filter(comics, HAIR == ”Black Hair”)

name EYE HAIR APPEARANCES
1 Batman Blue Eyes Black Hair 3093
2 Wonder Woman Blue Eyes Black Hair 1231
3 Namor McKenzie Green Eyes Black Hair 1528

17

Example: Superheroes

We can also filter by multiple variables and with negation e.g.

filter(comics, HAIR == ”Black Hair” & EYE != ”Blue Eyes”)

name EYE HAIR APPEARANCES
1 Namor McKenzie Green Eyes Black Hair 1528

18

Example: Superheroes

To sort these data, we can use the arrange() function e.g.
arrange(comics, APPEARANCES)

name EYE HAIR APPEARANCES
1 Jakeem Williams Brown Eyes <NA> 79
2 Wonder Woman Blue Eyes Black Hair 1231
3 Namor McKenzie Green Eyes Black Hair 1528
4 Susan Storm Blue Eyes Blond Hair 1713
5 Batman Blue Eyes Black Hair 3093
6 Spider-Man Hazel Eyes Brown Hair 4043

19

Example: Superheroes

We can prefix with a - sign to sort is descending order, and can
sort by multiple variables e.g.

arrange(comics, HAIR, -APPEARANCES)

name EYE HAIR APPEARANCES
1 Batman Blue Eyes Black Hair 3093
2 Namor McKenzie Green Eyes Black Hair 1528
3 Wonder Woman Blue Eyes Black Hair 1231
4 Susan Storm Blue Eyes Blond Hair 1713
5 Spider-Man Hazel Eyes Brown Hair 4043
6 Jakeem Williams Brown Eyes <NA> 79

20

Example: Superheroes

To extract a subset of columns of these data, we can use the
select() function e.g.
select(comics, name, HAIR, APPEARANCES)

name HAIR APPEARANCES
1 Batman Black Hair 3093
2 Wonder Woman Black Hair 1231
3 Jakeem Williams <NA> 79
4 Spider-Man Brown Hair 4043
5 Susan Storm Blond Hair 1713
6 Namor McKenzie Black Hair 1528

21

Example: Superheroes

A - prefix removes a column e.g.
select(comics, -APPEARANCES)

name EYE HAIR
1 Batman Blue Eyes Black Hair
2 Wonder Woman Blue Eyes Black Hair
3 Jakeem Williams Brown Eyes <NA>
4 Spider-Man Hazel Eyes Brown Hair
5 Susan Storm Blue Eyes Blond Hair
6 Namor McKenzie Green Eyes Black Hair

22

Example: Superheroes

To transform or add columns, we can use the mutate()
function5 e.g.

mutate(comics, logApp = log(APPEARANCES))

name EYE HAIR APPEARANCES logApp
1 Batman Blue Eyes Black Hair 3093 8.036897
2 Wonder Woman Blue Eyes Black Hair 1231 7.115582
3 Jakeem Williams Brown Eyes <NA> 79 4.369448
4 Spider-Man Hazel Eyes Brown Hair 4043 8.304742
5 Susan Storm Blue Eyes Blond Hair 1713 7.446001
6 Namor McKenzie Green Eyes Black Hair 1528 7.331715

5see also ?transmute
23

Pipes

One of the most useful6 features of tidyverse is the ability to
use pipes.

Piping comes from Unix scripting, and simply allows you to run
a chain of commands, such that the results from each command
feed into the next one.

tidyverse does this using the %>% operator7.

6in my opinion
7note that the fantastic magrittr package does this more generally in R

24

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

Pipes

The pipe operator in R works by passing the result of the left-hand
side function into the first argument of the right-hand side function.

Since all the functions we’ve seen so far take a data.frame as their
first argument, and return a data.frame, then we can chain these
together e.g.

comics %>%
select(name, APPEARANCES) %>%
arrange(-APPEARANCES) %>%
mutate(logApp = log(APPEARANCES))

25

Pipes

comics %>%
select(name, APPEARANCES) %>%
arrange(-APPEARANCES) %>%
mutate(logApp = log(APPEARANCES))

name APPEARANCES logApp
1 Spider-Man 4043 8.304742
2 Batman 3093 8.036897
3 Susan Storm 1713 7.446001
4 Namor McKenzie 1528 7.331715
5 Wonder Woman 1231 7.115582
6 Jakeem Williams 79 4.369448

Notice:

• No need for
temporary variables;

• less verbose;
• can be read like
prose (easier to
understand)

Note: if splitting over multiple lines, the pipe operator must be at the
end of the previous line.

26

Your turn

Have a read through Sections 2.1 and 2.2 of the notes, and have
a go at the tasks.

27

Aside: *_if and *_all

There are some useful shortcut functions, notably:

• mutate_if();
• mutate_all();
• summarise_if();
• summarise_all().

The *_if() functions apply a transformation or summary to a
column if it adheres to some criteria. The *_all() functions
apply the transformation or summary to all columns8.
8you will see the summarise() function shortly…

28

Aside: *_if and *_all

As a simple example, let’s summarise the data:
summary(comics)

name EYE HAIR APPEARANCES
Length:6 Length:6 Length:6 Min. : 79
Class :character Class :character Class :character 1st Qu.:1305
Mode :character Mode :character Mode :character Median :1620
Mean :1948
3rd Qu.:2748
Max. :4043

Here the character columns do not provide a helpful
summary. We could temporarily convert each character
column to a factor to produce a better summary.

29

Aside: *_if and *_all

Instead let’s try:

comics %>%
mutate_if(is.character, as.factor) %>%
summary()

name EYE HAIR APPEARANCES
Batman :1 Blue Eyes :3 Black Hair:3 Min. : 79
Jakeem Williams :1 Brown Eyes:1 Blond Hair:1 1st Qu.:1305
Namor McKenzie :1 Green Eyes:1 Brown Hair:1 Median :1620
Spider-Man :1 Hazel Eyes:1 NA's :1 Mean :1948
Susan Storm :1 3rd Qu.:2748
Wonder Woman :1 Max. :4043

This is much neater, and doesn’t change the original data frame.
30

Grouping and summarising

We may also want to produce summaries for different subsets of the
data.

For example, let’s say we want to produce a mean number of
appearances for superheroes with different eye colours9. We do this
using the group_by() and summarise() functions e.g.

comics %>%
group_by(EYE) %>%
summarise(

meanApp = mean(APPEARANCES))

EYE meanApp
1 Blue Eyes 2012.333
2 Brown Eyes 79.000
3 Green Eyes 1528.000
4 Hazel Eyes 4043.000

9not very interesting I know…
31

Grouping and summarising

A particularly useful function is count(), which tabulates the
numbers of observations. This is particularly useful when combined
with group_by() e.g.

comics %>%
group_by(EYE) %>%
count()

EYE n
1 Blue Eyes 3
2 Brown Eyes 1
3 Green Eyes 1
4 Hazel Eyes 1

32

Your turn

Have a crack at Section 2.3 of the workshop.

33

Gather and spread

Other really important functions are gather() and spread().

These functions are used to manipulate data.frame objects
into different forms.

They are often key to wrangling ‘messy’ data sets into ‘tidy’ data
sets.

34

Example: Senate predictions 2018

Let’s look at an example from the FiveThirtyEight website.

These data show the predicted probability of each party winning
each seat, based on a statistical model fitted on 30th October
2018.

I have filtered and wrangled these data to illustrate these
methods, the original data were in fact ‘tidy’!

35

Example: Senate predictions 2018

Let’s have a look at the data.

head(senate)

A tibble: 6 x 4
state D O R
<chr> <dbl> <dbl> <dbl>
1 AZ 0.644 NA NA
2 AZ NA 0 NA
3 AZ NA NA 0.356
4 CA 1 NA NA
5 CT 0.991 NA NA
6 CT NA NA 0.009

Key:
• D: Democrat
• O: Other
• R: Republican

These are not in ‘tidy’ format!

36

https://projects.fivethirtyeight.com/2018-midterm-election-forecast/senate/?ex_cid=rrpromo

Gather

To coerce these into ‘tidy’ format we can use the gather()
function, which takes multiple columns, and gathers them into
key-value pairs.

It takes the form:

gather(data, key, value, ...)

where ... is replaced with the names of the columns we wish
to gather together (or the ones we wish to exclude from
gathering).

This is best illustrated by an example.
37

Example: Senate predictions 2018

state D O R
1 AZ 0.6442 NA NA

Here we want to collapse the columns
labelled D, O and R into a new column
called party (the key), with the
predicted proportions in a column
called prop (the value). We do not
want state to be gathered.

senate %>%
gather(party, prop, -state)

state party prop
1 AZ D 0.6442
2 AZ D NA
3 AZ D NA
4 CA D 1.0000
5 CT D 0.9910
6 CT D NA

38

Example: Senate predictions 2018

Note that the following are equivalent:

senate %>%
gather(party, prop, -state)

senate %>%
gather(party, prop, D, O, R)

You can chose whichever option is the most sensible.

You can also pipe together to remove the extraneous NAs (and
overwrite the original senate object):

senate <- senate %>%
gather(party, prop, -state) %>%
filter(!is.na(prop))

state party prop
1 AZ D 0.6442
2 CA D 1.0000
3 CT D 0.9910
4 DE D 0.9987
5 FL D 0.7005
6 HI D 1.0000

39

Spread

spread() does the opposite of gather(): it takes two columns
(key and value) and spreads these into multiple columns e.g.

senate

state party prop
1 AZ D 0.6442
2 CA D 1.0000
3 CT D 0.9910
4 DE D 0.9987
5 FL D 0.7005
6 HI D 1.0000

senate %>%
spread(party, prop)

state D O R
1 AZ 0.6442 0 0.3558
2 CA 1.0000 NA NA
3 CT 0.9910 NA 0.0090
4 DE 0.9987 NA 0.0013
5 FL 0.7005 NA 0.2995
6 HI 1.0000 NA 0.0000

40

Example: Senate predictions 2018

We can now do some more complex analyses. For example, to
produce a table of binary predictions based on p > 0.5 (using
the ‘tidy’ version of the data):

senate %>%
mutate(outcome = ifelse(prop > 0.5, 1, 0)) %>%
group_by(party, outcome) %>%
count() %>%
spread(party, n)

outcome D O R
1 0 9 10 24
2 1 23 2 8

41

Unite and separate

Other useful functions are unite() and separate(), the
former takes multiple columns and binds them together, and
the latter takes a single column and splits it apart. For example:

senate <- senate %>%
mutate(outcome =

ifelse(prop > 0.5, 1, 0)) %>%
group_by(party, outcome) %>%
count()

senate

party outcome n
1 D 0 9
2 D 1 23
3 O 0 10
4 O 1 2
5 R 0 24
6 R 1 8

senate <- senate %>%
unite(outcome,

party, outcome, sep = ”_”)
senate

outcome n
1 D_0 9
2 D_1 23
3 O_0 10
4 O_1 2
5 R_0 24
6 R_1 8

42

Unite and separate

To reverse this, we can use separate():

senate

outcome n
1 D_0 9
2 D_1 23
3 O_0 10
4 O_1 2
5 R_0 24
6 R_1 8

senate <- senate %>%
separate(outcome,

c(”party”, ”outcome”), sep = ”_”)
senate

party outcome n
1 D 0 9
2 D 1 23
3 O 0 10
4 O 1 2
5 R 0 24
6 R 1 8

43

Your turn

Have a crack at Section 2.4 of the workshop.

44

Joins

A key data analytics skill is to be able to join different tables together.
This can be done using *_join() functions. Key types of join are:

• inner_join()
• left_join() / right_join()
• full_join()
• semi_join() / anti_join()

You can join tables by cross-referencing against key variables. As an
example, let’s join two tables relating to information on superheroes…

45

Joins

comics

name EYE HAIR APPEARANCES
1 Batman Blue Eyes Black Hair 3093
2 Wonder Woman Blue Eyes Black Hair 1231
3 Jakeem Williams Brown Eyes <NA> 79
4 Spider-Man Hazel Eyes Brown Hair 4043
5 Susan Storm Blue Eyes Blond Hair 1713
6 Namor McKenzie Green Eyes Black Hair 1528

year_published

name Year
1 Batman 1939
2 Wonder Woman 1941
3 Spider-Man 1962
4 Susan Storm 1961

Here we will join the two
tables by name.

46

inner_join()

The simplest type of join is an inner join. This joins two data
frames and retains only those rows in each data frame that can
be matched e.g.

inner_join(comics, year_published, by = ”name”)

name EYE HAIR APPEARANCES Year
1 Batman Blue Eyes Black Hair 3093 1939
2 Wonder Woman Blue Eyes Black Hair 1231 1941
3 Spider-Man Hazel Eyes Brown Hair 4043 1962
4 Susan Storm Blue Eyes Blond Hair 1713 1961

47

left_join()

A left join retains all rows in the left data frame, but only rows
in the right data frame that can be matched e.g.
left_join(comics, year_published, by = ”name”)

name EYE HAIR APPEARANCES Year
1 Batman Blue Eyes Black Hair 3093 1939
2 Wonder Woman Blue Eyes Black Hair 1231 1941
3 Jakeem Williams Brown Eyes <NA> 79 NA
4 Spider-Man Hazel Eyes Brown Hair 4043 1962
5 Susan Storm Blue Eyes Blond Hair 1713 1961
6 Namor McKenzie Green Eyes Black Hair 1528 NA

Here R replaces elements it can’t match with NA.
48

right_join()

A right join retains all rows in the right data frame, but only
rows in the left data frame that can be matched e.g.

right_join(comics, year_published, by = ”name”)

name EYE HAIR APPEARANCES Year
1 Batman Blue Eyes Black Hair 3093 1939
2 Wonder Woman Blue Eyes Black Hair 1231 1941
3 Spider-Man Hazel Eyes Brown Hair 4043 1962
4 Susan Storm Blue Eyes Blond Hair 1713 1961

This is the same as the inner_join() in this case. Why?
49

full_join()

A full join retains all rows in the both data frames e.g.

full_join(comics, year_published, by = ”name”)

name EYE HAIR APPEARANCES Year
1 Batman Blue Eyes Black Hair 3093 1939
2 Wonder Woman Blue Eyes Black Hair 1231 1941
3 Jakeem Williams Brown Eyes <NA> 79 NA
4 Spider-Man Hazel Eyes Brown Hair 4043 1962
5 Susan Storm Blue Eyes Blond Hair 1713 1961
6 Namor McKenzie Green Eyes Black Hair 1528 NA

This is the same as the left_join() in this case. Why?
50

semi_join()

A semi join return all rows from the left data frame where there
are matching values in the right data frame. It returns just
columns in the left data frame, and does not duplicate rows
(i.e. it is a filtering join):

semi_join(comics, year_published, by = ”name”)

name EYE HAIR APPEARANCES
1 Batman Blue Eyes Black Hair 3093
2 Wonder Woman Blue Eyes Black Hair 1231
3 Spider-Man Hazel Eyes Brown Hair 4043
4 Susan Storm Blue Eyes Blond Hair 1713

51

anti_join()

An anti join return all rows from the left data frame where there
are not matching values in the right data frame. It returns just
columns in the left data frame, and does not duplicate rows
(i.e. it is a filtering join):

anti_join(comics, year_published, by = ”name”)

name EYE HAIR APPEARANCES
1 Jakeem Williams Brown Eyes <NA> 79
2 Namor McKenzie Green Eyes Black Hair 1528

52

Joins
We can also join multiple tables together using e.g. pipes (or similar)
comics

name EYE HAIR APPEARANCES
1 Batman Blue Eyes Black Hair 3093
2 Wonder Woman Blue Eyes Black Hair 1231
3 Jakeem Williams Brown Eyes <NA> 79
4 Spider-Man Hazel Eyes Brown Hair 4043
5 Susan Storm Blue Eyes Blond Hair 1713
6 Namor McKenzie Green Eyes Black Hair 1528

year_published

name Year
1 Batman 1939
2 Wonder Woman 1941
3 Spider-Man 1962
4 Susan Storm 1961

publisher

name publisher
1 Batman DC
2 Wonder Woman DC
3 Jakeem Williams DC
4 Spider-Man Marvel
5 Susan Storm Marvel
6 Namor McKenzie Marvel 53

Joins

comics %>%
full_join(year_published, by = ”name”) %>%
full_join(publisher, by = ”name”)

name EYE HAIR APPEARANCES Year publisher
1 Batman Blue Eyes Black Hair 3093 1939 DC
2 Wonder Woman Blue Eyes Black Hair 1231 1941 DC
3 Jakeem Williams Brown Eyes <NA> 79 NA DC
4 Spider-Man Hazel Eyes Brown Hair 4043 1962 Marvel
5 Susan Storm Blue Eyes Blond Hair 1713 1961 Marvel
6 Namor McKenzie Green Eyes Black Hair 1528 NA Marvel

54

Joins

Note: you can also join by more than one variable e.g.

inner_join(x, y, by = c(”variable1”, ”variable2”))

55

Your turn

Have a crack at Section 2.5 of the workshop.

56

Epilogue

You should now be ready to work through the final (more
comprehensive) example in Section 2.6 of the workshop notes.

This brings together various aspects of the last two-days. We
take multiple ‘messy’ data sets, join them together, wrangle
them into the correct format and then plot them using
ggplot2.

Along the way we use a few features of tidyverse that we
haven’t introduced, so I wouldn’t expect you to be able to
recreate this plot from scratch, but I want you to go through the
code and understand what is happening.

57

Epilogue

Hopefully these workshops have given you a flavour of the
power of tidyverse.

I for one do most of my data analyses using tidyverse now,
although remember that it may not be suitable for all types of
data / analysis method, so you should view it as one tool in
your data science arsenal.

If this has whetted your appetite, I can thoroughly recommend
Hadley Wickham and Garrett Grolemund’s “R for Data Science”
book!

Please feel free to e-mail me if you have any further questions.
58

https://r4ds.had.co.nz/

